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In this paper a multi-variate spline interpolational method on a rectangular grid
is presented. The method is based on the use of a special continuous piecewise
polynomial which is quadratic in each variable. In addition to approximation
properties, the shape preserving characteristics and stability of the method have
been proved. © 1992 Academic Press, Inc.

INTRODUCTION

The objective of this paper is to construct a spline approximational
method for functions in several variables. Various spline approximational
methods have been worked out by several authors. For references
addressing this problem see the monumental bibliography of [4]. For
functions of several variables the most useful techniques on a rectangular
grid are the tensor product methods and the blending methods. Here we
present a different method. Our method produces an interpolant on a
rectangular grid in n dimensions, which is a special piecewise quadratic
polynomial in each variable, and it is continuous. By using a recursive
formula one gets a particularly simple expression for the approximant,
including only the nodal function values (and maybe the nodal derivative
values), which is very useful for practical reasons and for applying
computing procedures. We prove approximation theorems for the spline
function, which show that the order of the approximation is the best
possible, depending on the smoothness of the function, and even the
constants in the estimates can be calculated easily. Another feature of
this method is that the approximant possesses some shape-preserving
properties. Finally, the stability of the construction makes it possible to
apply it to numerical solution of partial differential equations, which is also
illustrated with examples.

We note that similar techniques can be found in [11] in the two­
dimensional case.
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1. NOTATIONS

In what follows, IR, 7L, and N denote the set of reals, the set of the
integers, and the set of natural numbers (including zero), respectively. For
any vector x in R n we denote its jth component by (x)j = Xj' that is,
x = (Xl> X2' ..., x n ). Addition, multiplication, and inequality between vectors
will be defined componentwise. For a, b in IR n we write [a, b] =
{x E IRn: a ~ x ~ b}, and a b = n;~ I (ayJ, where 00 = I. The zero vector will
be denoted by O. We let e = (I, I, ..., I), further ej denotes the vector, whose
jth coordinate equals I, the others being zero (j = I, 2, ... , n). If u: W --+ IR,
h, k are arbitrary elements of W, then let LI: denote the difference operator

where LlZ::::::Z: is the product of the kjth iterates of the difference operators
with increment hj in the jth variable, respectively. The modulus of
continuity of a given function u is defined as usual, and we denote it by
wAu). Here d stands for the (euclidean) diameter of the set, on which the
oscillation of u is considered.

2. CONSTRUCTION OF THE SPLINE FUNCTION

Let {ti LEZn be an equidistant subdivision of IR n with h = (hi' ..., hn ), that
is, (ti+e-t;}j=hj . Let {UdiEZn and {ulej)LEZn (j=I, ...,n) be given
systems Jof real numbers. We put d= [L:;=I hfJ1/2, the diameter corre­
sponding to this subdivision.

For all t in [til t j + e] let

Sj(t) = I Alk)(t - tj)k,
k EO<

where IK is the set of all n-dimensional multi-indices k, with 0 ~ k ~ 2e and
kj = 2 for at most one j; that is, Sj is a special quadratic polynomial in each
variable. Further, the coefficients Alk

) are to be chosen satisfying the
conditions

Si(t i + 1) = Uj + 1

OjSj(t j + d = ul~\

for O~ 1 ~e,

The numbers of the unknown coefficients A lk) and of the conditions (equa-
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tions) are equal to 2n + n2n
- 1. In the two-dimensional case the conditions

can be illustrated in

(i, j + 1) (i + 1, j + 1)

U,al~U

~
(i, j) (i + 1, j)

that is, we have the equations

LEMMA 1. There exist unique constants A lk) such that the functions Sj of
the form (l)n satisfy (2)n-

Proof We show by induction, with respect to dimension n, that the
coefficients Alk

) are uniquely determined by condition (2)n' For n = 1 this
is trivial. In the (n + 1)-dimensional case it follows by induction that all
those coefficients A lk) are uniquely determined, where k has at least one
zero coordinate. For the remaining coefficients Alk

) we have a system of
linear equations with the regular matrix

(

1 1 1 1)1 0 1 1

1

110 01;

1 ..

hence, existence and uniqueness are proved. I
Now we define an n-dimensional quadratic spline function S (corres­

ponding to the knots {td and to the systems {ud, {ulej
)}) on IR n as

follows: for all t in [t j , ti+ e) let

S(t) = Sj(t).

Remark 1. For instance, the two-dimensional quadratic spline function
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of the form (1)2-(3)2 can be expressed as follows: for any XE [Xi' Xi+l]
and yE [Yj' Yj+l] we have

S(x, y) = SijX, y) = (l - s){ Ui,j + t[hu~Y) + t(Ui+ 1,j- ui,/- hU~,l/)]}

+ s{ Ui,j+ I + t[hU~,I;~\ + t(ui+1,/+ 1 - Ui,j+ 1 - hut]~\)]}

+ (1 - s)s{ (lu~,O/) - Ui,j+ 1+ ui,/)(l- t)

+ (lu~~ ~~j - Ui+1,j+ 1 + Ui+I,j)t},

where we have used the notation x i+1 - Xi = h, Yj+ 1 - Yj = I, t = (x - xi)/h,
and s= (Y- y)/I.

More generally, it is easy to see (again by the uniqueness part of
Lemma 1), that the n + I-dimensional spline function s(n +I) can be
expressed with the help of the n-dimensional s(n) as

n

+(vn+l -l)vn+l L TI W/[Ui+l+en+,-Ui+l-hn+lUl";1Il],
O~l::::;ej=l

In+l =0

where

if Ij = 1

if Ij = 0

for j = 1, ..., n. This recursive formula will be very useful in proving
approximation properties of the spline function, as we see in the next
section.

LEMMA 2. The n-dimensional quadratic spline function S defined by
(l)n-(3)n is continuous.

Proof It is enough to prove that Sj(t)=Si+e(t) holds for all those tin
J

the interval [til t j+e] which are not contained in [til t j+e)' In other words,
we must show that

holds for all t with the property (t)j = (t;)j+ hj (j = 1, ..., n + 1). We restrict
ourselves to the casej=n+1. We write t=(t',(t;)n+d with t'ElRn. One
sees immediately that both functions

t' --+ S;(t)
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t'---.S,+ (t)
I eJ
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are of the form (1)n and satisfy the conditions (2)n; hence by the
uniqueness part of Lemma 1 they coincide for all t'. I

3. ApPROXIMATION PROPERTIES OF THE SPLINE FUNCTION

In what follows we apply the above spline construction for different
choices of the given values {Uj}iE.?'n and {Ulej)}iEZn (j= 1, ..., n). However,
the values {uJ i E zn will always be the function values of a function
u: W ---. IR at the knots of the subdivision {tJ i E zn, that is

for all i. On the other hand, the values {ul eJ )}; E zn can be defined quite
arbitrarily in several different ways.

Let u: W ---. IR be a function having first order partial derivatives with
respect to each variable. We define for all i in 7L n and j = 1, 2, .." n

First we study the approximating properties of the respective spline
function, depending on the smoothness of u.

THEOREM 1. Let u: W ---. IR be continuously differentiable. Then the spline
function S defined by the conditions (1)n-(5)n satisfies

n

lu(t) - S(t)1 ~! L hjwAoju),
j~l

and

for all t in IR n and for k = 1, ..., n, where d is the diameter corresponding to
the subdivision.
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Proof We prove the theorem by induction with respect to the dimen­
sion and for the case n = 1 we use the following formulas from [6]: if
tE [ti' ti+1], then

S(t) - u(t) = Si(t) - u(t) = ui(l- v2
) + ui+1 v2 + hu;v(l- v) - u(t),

IS(t) - u(t)1 :::::; 3~ hWh(U'):::::; ~ hWh(U'),

and

IS;(t) - u'(t)1 = 12v[(ui+1 - uJ/h - u'(t)] + (1- 2v)[u; - u'(t)]1

where v = (t - ti)/h, Hence our statement for n = 1 follows immediately, and
now we consider the statement in !Rn+ I, Let t E [ti' ti+ e]; then we have by
induction and by the Lagrange theorem

lu(t) - S(t)1

= IU(tl' ... , tn' tn+1)-Sln+l)(t1> ..., tn' tn+1)1

:::::;vn+1Iu(tl' ..., tn' (tj+e)n+d-Sl':!en+l(tl, .." tn)1

+ (1 - Vn+ d lu(t I> .. " tn' (tj)n + d - Sln)(t l' ... , tn)1

n

+ (1- vn+d Vn+1 L n WjlUj + 1 +en+l - Ui+ 1 - hn+l u l":i t )1
O~l~ej=l

In +1 ~ 0

n

:::::;! L hjWd(OjU)+(I-vn+dvn+lhn+llon+1U(tl, .."tn,~n+d
j~1

n n+ 1

+(1-Vn+l)Vn+lhn+1Wd(On+1U) L n Wj:::::;! L hjWAOju),
O,;;I';;e j=1 j=1
In+l =0

where (t;)n+l<~n+l,.9n+l«tj+e)n+l' Here we have used the obvious
identity

n

L n wj =1.
O~l:OS;;e j=l
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The respective statement for the derivatives can be obtained similarly,
and here we prove it for k= 1. Let tE [t;, t i + e ]; then we have by induction
and by the definition of the modulus of continuity

= 10Iu(t l , ..., tn' tn+d-olsln+l)(tl, ..., tn' tn+dl

~ Vn+ 110 I u( tI' ... , tn' (t; + e)n + I) - 0 I Sl~en +Jt I' ... , tn)1

+ (l-vn+I)lolu(tl, ..., tn' (tj)n+d-01Sln)(tj, ..., tn)1

+ Vn+ 110 1U(t 1, ... , tn' tn+ d - 0IU(t 1, •.. , tn' (t; +e)n + II

+ (1-vn+dI0IU(t 1, ..., tn' tn+d-OlU(tj, ..., tn' (tj)n+dl

hence our theorem is proved. I

THEOREM 2. Let u: IRn --+ IR be twice continuously differentiable. Then the
spline function S defined by the conditions (l)n-(5)n satisfies

and

for all t in IRn and for k = 1, ..., n, where d is the diameter corresponding to
the subdivision.
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Proof First we deal with the one-dimensional case. We use the
following formula of [6] again: for tE [ti' ti+ 1 ] we have

S(t) - u(t)

= Si(t) - u(t) = ui(l- v2
) + ui+ 1 v2 + hu;v(l- v) - u(t)

=h2 [J: l/!l(v,r)u"(t i+rh)dr+rl/!2(V, r) u"(ti+rh)dr}

where v=(t-tJ/h, l/!l(v,r)=(I-v)[(I+v)r-v], l/!2(v,r)=v2(1-r);
further

which implies the first statement for n = 1. In order to estimate the
derivatives, we compute

R'(t) = S; (t) - u; (t) = hU"(t) [l/! 1(v, v) -l/!2(v, v)]

+h [J: (:v l/!l(V, r)) u"(ti+rh)dr

+r(:v l/!2(V, r)) U"(t i+ rh) drJ

= h [J: (2v(1- r) -1) U"(ti + rh) dr

+r2v( 1- r) U"(t i+ vh) dr1
In the first integral the function v --+ 2v( 1 - r) - 1 keeps its sign for
o~ v < 1/2, and for 1/2 ~ v ~ 1 it changes the sign only for r = r* =
(2v - 1)/2v, and in the second integral the function v --+ 2v( 1- r) is non­
negative. In order to apply the mean value theorem, we consider the cases
o~ v < 1/2 and 1/2 ~ v ~ 1 separately. For 0 ~ v < 1/2 we have

R'(t) = h [UII(lJd 5: (2v(1 - r) - 1) dr + U"(lJ2)r2v(1 - r) drJ

= h[u"(lJd - U"(lJ2)] v(2v -1- v2),
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where 1]1' 1]2E(t;, t;+d and for 1/2~v~ 1 it follows that

RI(t)=h[U"(~d('(2v(l-r)-I)dr

+ U"(~2) r. (2v(1- r) -1) dr + u"(I]) ( 2v(1- r) dr]

=h [(U"(~d-U"(~2))(2V~1)2 + (u"(I])-U"(~2)) V(V-l)2}

where ~ I' ~ 2, 1] E (I;, I; + d, and hence we have in both cases for all I

For the estimation of IR"(t)1 we have by differentiation

R"(t)=[f: 2(1-r)u"(t;+rh)dr+ (2(I-r)U"(t;+rh)dr]-U"(t)

=r2(1- r) u"(t;+ rh) dr - u"(t) = u"(~) - u"(t),
o
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and hence the statements of the theorem are proved for n = 1. Now we
apply induction again with respect to the dimension. Let t E [t;, t; + eJ; then
we have by induction and by the second order Taylor formula

lu(t) - S(t)1

= lu(tJ, ..., tn' tn+d-sln+l)(t l , ..., tn' tn+I)1

~ Vn+ 1 lu(t I' ..., tn' (t j+ e)n + d - sl"2en+ I(t I' ... , tn)1

+ (l-vn+dlu(tl> ..., tn' (tJn+d-Sln)(tI' ..., In)1

+ /Vn+I[U(IJ, ..., In' tn+d-U(tl' ..., tn' (tj+e)n+l)]

+(l-vn+d[u(t l , ..., tn' In+d-u(t l , ..., tn' (tj)n+dJ

+(l-vn+dvn+1 L fI Wj(U;+I+en+l-ui+l-hn+lul";'lIJ)!
O:!S;l~eJ=l

In + 1= 0
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+ Lrl Wj~hn+l 8~+lU{il)1
O';;l';;eJ~l

tn + 1~O

n

~~ L hJWd{8Ju)+{1-vn+dvn+lh~+118~+lU{i)-8~+lU{t)1
j~l

n+ 1

~ ~ L hJwd {8Ju),
j~l

where ~n+1>.9n+1E(tn+l>tn+l+hn+l]' i., i, tE[tj,ti+e], which is our
first statement. For the first derivative (with respect to the first variable) we
proceed similarly:
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with some appropriate if, fl' Finally, for the second derivative we get

laiu(t)-ais(t)1

= laiu(tl' ..., tn, tn+1)-ais!n+I)(t1, ..., tn' tn+dl

~vn+llaiu(tl' ..., tn' (ti+e)n+l)-oiSl':!en+,(tl' ..., tn)1

+(I-Vn+l)loiu(t1, ..., tn, (t;)n+d-ais!n)(t 1, ..., tn)1

+vn+1Iafu(t1, ..., tn, tn+1)-aiu(t1, ... , tn' (ti+e)n+dl

+ (1-Vn+l)loiu(t 1, ..., tn' tn+d-Jiu(t 1, ..., tn' (tj)n+dl

~ nwAoiu) + wAaiu) ~ (n + 1) wAaiu),

and our theorem is proved. I
In the applications it occurs frequently that the values of the function,

which is to be approximated, are known at the knots of some subdivision,
but not the values of its derivatives. In these cases the choice

u!ej
) = (u i + ej - ui)/hj

(forward-difference) seems to be plausible. It turns out that in this case the
respective spline function is piecewise linear; actually it is the generalization
of the one-dimensional approximation with line segments.

Another possible definition of u!ej
) with the help of differences of func­

tion values is the following (central-difference): for all i in lL n and for
j = 1, 2, ..., n we let

Remark 2. We remark that, for instance, the coefficients of the two­
dimensional quadratic spline function of the form (l)z-(4)z and (6)2 can be
expressed as follows: for any x E [Xi' X i + I] and Y E [YJ' YJ+ I] we have

A(M)=U· .
'.J I.J

A (0. I) _ ~ ( _ )
i,j - 21 Ui,j+ I Ui,j-l
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The approximating properties of the respective spline function are
expressed by the following theorems.

THEOREM 3. Let u: IRn --+ IR be continuous. Then the spline function S
defined by the conditions (l)n-(4)n and (6)n satisfies

for all t in IRn, where d is the diameter corresponding to the subdivision.

Proof In the one-dimensional case we have, for all tE [t;, t;+I]'

IS(t) - u(t)1 = IS;(t) - u(t)1 ~ lu;- u(t)1 (1- v2
) + lui + 1 - u(t)1 v2

+ ~ Iu; + 1 - u; _ 11 v( 1- v)~ ~ co h(u),

where v = (t - tJlh. By induction and by the recursive formula it follows
that

n

+ 1(1 v ) v "Il w.[ A(2en+ 1)u. I2: - n+l n+l L..., J LJ I+l-en+l

O:s;;l~ej=l

In+ 1 =0

THEOREM 4. Let u: IRn --+ IR be continuously differentiable. Then the spline
function S defined by the conditions (l)n-(4L and (6)n satisfies

n

lu(t) - S(t)[ ~ ~ L hjcod(oju)
j~1

and

1 n

IOkU(t) - OkS(t)\ ~ ncod(ok u)+h L hjcoAoju)
k j~ 1

for all t in IR n and for k = 1, ..., n, where d is the diameter corresponding to
the subdivision.
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Proof Let S denote the spline function defined by (l)n-( 5)n. By
induction on the dimension we show that

n

IS(t) - S(t)1 ::::; ~ L h/JJd(OjU)
j=1

and

holds for all t in /Rn and for k = 1, ..., n. In the one-dimensional case we
obtain, for tE [ti' ti+IJ,

- I ui + 1- ui 1/ 1IS(t)-S(t)l=hv(l-v) u;- 2h - ::::;"4hWd(u'),

IS'(t) - S'(t)1 = 11- 2vl Iu; - Ui
+I;Ui

_
l

! ::::; wAu'),

where v = (t - t;)/h. Then it follows for all t in [t j , t j + eJ that

1 n

IS(t) - S(t)I::::;"4 L hjwAoju)
j=1

n

+(l-vn+dVn+,hn+, L TI wj
O,,;l,,;e j~l

1,,+1 =0

I

u· I - u· I 1(e
l1

+t> 1+ +en+! J+ -en+l
X ui + I - 2h

n+1
1 n+ I

::::;"4 L hpAoju).
j=1

Without loss of generality we prove the respective statement for the
derivatives in the case k = 1:

640/68/2·2
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Hence, by Theorem 1,
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n
lu(t) - S(t)1 :( lu(t) - 8(t)1 + 18(t) - S(t)1 :( ~ I h/wAo/u),

j~l

and similarly

1 n

:( nwd(ok u )+h I h/wAo/u). I
k /= 1

THEOREM 5. Let u: W -> IR be twice continuously differentiable. Then the
spline function S defined by the conditions (1 )n-(4)n and (6)n satisfies

for all t in IR n and for k = 1, ..., n, where d is the diameter corresponding to
the subdivision.

Proof Let 8 denote the spline function defined by (1)n-(5)n' By
induction on the dimension we show that

- 1 ~ 2 ;\2
/8(t)-8(t)/:(- ~ hjwAu/u)

8j~1 .

and

holds for all t in IR n and for k = 1, ..., n. In the one-dimensional case we
have, for t E [Ii' t i + 1]'



QUADRATIC SPLINE APPROXIMATION

/S(t)-S(t)1 =hv(1-v) IU:- Ui + 1;U i -l! ~~h2WAU"),

I u· J -U· II 1IS'(t)-S'(t)I=11-2vi u;- 1+ 2h I~ ~2hwAu"),

21 U l-U, 11IS"(t)-S"(t)l=h u/- 1+ 2h 1- ~wAu"),

127

where v = (t - tJ/h. In the n + I-dimensional case, similarly to the previous
theorem, we obtain, for all t in [ti' ti+eJ,

I "
IS(t)-S(t)1 ~- L hJwAoJu)

8 j= I

n

+(1-vn +dv,,+zhn + 1 I DWj
O~l~ej=l

In + 1 = 0

I
U. t -U· t I(en+l) _ 1+ +en+1 1+ -en+l

X U i + 1 2h
n+1

1"+ 1

~8 I hJwAoJu)
j~ 1

and

h2
"

+(I-Vn+dvfl+l ~+I I n WjWAO~+lU)
1 O<;;t<;;e 1=2

In+ 1=0
/1 ~O

Hence, by the estimations in Theorem 2 we get our statement. I

For practical reasons it is useful to prove the stability of our construc­
tion, which means that small perturbations in the initial data have only a
small effect on the resulting spline function.

THEOREM 6. Let S, resp. S, denote the spline function defined by
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(l)n-(4)n and (6)n corresponding to the systems {Ui} and {iii}, respectively,
where lUi - iii! ~ e holds for all i. Then we have

_ ( 3) eIS(t) - S(t)1 ~ n +2 2

for all t in ~n.

Proof In the one-dimensional case we obviously have

IS(t) - S(t)1 ~ e(1- v2
) + ev2 + v(1- v)e ~ ~e;

hence our statement is an immediate consequence of the recursive formula
(see Remark 1). I

Remark 3. The question of how to define the spline function at the
edge of a bounded domain, that is, in the case where the function values
for the differences are not defined, arises. Let, for instance, the bounded
region be [a, bJ and we divide the interval raj, bJ into mj equal pieces,
hj = (bj - aj )/mj ; that is, the jth coordinates of the knots are aj =
tjo < tiI < '" < tjm] = bj . Let

For instance, in the two-dimensional case we have the following for all i, j,

Sojt, s) = SI.j(t, s)

Si.O(t, s) = Si,1 (t, s)

So,o(t, s) = Sl,I(t, s).

As our estimates are based on the Taylor formula, here the order of the
approximation is the same. Further, this spline function is continuous on
[a, b].

4. SHAPE-PRESERVING PROPERTIES

Recently special attention has been paid to shape preserving properties
of approximation methods in one and several dimensions (see, e.g., [2, 3,
7, 8J). The following show that our construction has some shape­
preserving properties, too.

THEOREM 7. Suppose that the given system {Ui} satisfies
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for all i and for some j. Then the spline function S defined by the conditions
(l)n-(4)n and (6)n is convex on each rectangle of the subdivision in the jth
variable.

Proof By the recursive formula one gets

s~n+I)(tl' ..., tn' tn+d

_ -en) -(n)
-Vn+ISj+en+Jtl' ..., tn)+ (l-vn+l ) Sj (tl, ..., tn)

where

if Ij = 1

if 1=0.I

for j = 1, ..., n + 1. By assumption it follows that

n

- -- '" fl w Lf (2en + Ilu >- 0- h2 i...J. j i+l-en+l::- ,
n+l O~l::E;e 1=1

In + 1 =0

which is the statement. I
The above statement can be strengthened in the two-dimensional case as

follows.

THEOREM 8. Suppose that the given system {u i•j } satisfies

(0 :::; a, f3 :::; 2, a + f3 :::; 2)

for all i, j. Then the spline function S defined by the conditions (1 )2-(4hand
(6h is nonnegative, monotonically increasing in each variable. Moreover, if in
addition

LfI·'U . . >- AI.I U ..
l,j:;...-""LJ I,J-I,

then 0102 S(x, y)?: 0 on each rectangle.
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where Xi+l-xi=h, Yj+I-Yj=l, t=(x-xi)/h, and s=(Y-Yj)/I. As
OISijX, y) is monotonically increasing in the variable x, to prove its
nonnegativity, it is enough to show that the function

is nonnegative on [Yj' Yj + I]. The quadratic polynomial p is nonnegative
at Yj and Yj+ I' If Li1.2Ui,j_ 1 > 0, then p is convex and its minimum is out­
side of the interval [Yj' Yj + I]; hence it is monotonic on it. If Li1.2Ui,j_ I ~ 0,
then p is concave on [Yj' Yj+ I]; thus our statement follows in both cases.
The nonnegativity of the function S is a consequence of the interpolation
property and the monotonicity. Finally, if Lil,lui,j~ Li l

, IUi,j_ 1 and
Li 1,lU.. >-Li 1,IU. . then

l,j r 1-1,1'

5. ApPLICATIONS

A well-known and useful numerical method for the approximate solution
of partial differential equations is the method of finite differences (net
method). In this method the partial derivatives of the unknown function in
the equation are replaced by appropriate differences on a given rectangular
grid. Hence the original problem converts into a difference equation for the
approximate values of the unknown function at the knots. A possible
discretization in a second order partial differential equation is

OjU(t j ) ~ ulej) = (ui+ej - ui_e)/2hj,

oju(t;) ~ (u i+ej - 2Ui + ui_e)/hj,

OjOkU(t;) ~ (Ui+ej+ek - ui+ej - Ui+ek + uJ/2hjhk.

(see, e.g., [1,10]). In this case the quadratic spline function defined by
(l)n-(4)n and (6)n is a solution of the original problem at the knots, as its
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partial derivatives at the knots are given exactly by the above formulas. By
the stability property our spline function can be considered an approximate
solution on the whole domain, and if the error at the knots is at most e,
then by Theorems 5 and 6 the error on the whole domain is at most
! LJ= I hjwAoJu) + (n + ~)(e/2). This approximation procedure can be
applied, for instance, for elliptic, parabolic, and hyperbolic partial
differential equations, even in the nonlinear case.

6. NUMERICAL EXAMPLES

Here we give some numerical examples which may illustrate the possible
applications of the above methods. In the first example we present a
graphical comparison of the exact and spline approximations defined by
the conditions (1 )2-(4)2 and (6)2 for the functions

u(x, y)= [1 +2e- 3(r-6.7)J- 1/ 2,

on [0, IOJ2 (Fig. 1) and

( ) {
'xi y,u x y =, 0,

xy~O,

otherwise

U(X,y)=( 1+2e-3(r-6.7l )-1/2 • r=<x 2 +y2)1/2. x,yt(O,10)

U(X,y)

U(X,y)-S(X,y)

FIGURE 1

S<X,y)
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on [-4,4]2 (Fig. 2). The intervals have been divided into 20 subintervals
in both cases. We note that we have plotted the error functions u - S in
both cases, too (see also [2]).

The second example is the approximation of the function

uo(x, y, z) = xyeX + Z

by the spline function of the form (l)r(4)3 and (6h on the unit cube
[0, 1y We have used a subdivision corresponding to hi =h2 =h3 = 10- 2

•

By Theorem 2 the error of the approximation is

luo(x, y, z) - S(x, y, z)1 ~ 2.58617 10- 5 on [0, ly

Some exact and approximate values are summarized in Table 1.
In Table 2 the approximation of LJuo by LJS on the above grid is

illustrated (LJ denotes the Laplace operator).
The third example is the finite-difference approximation to the

hyperbolic "wave" equation (see [11, p. 199])

aiu(x, t) = a~u(x, t)

{
/XIY.

u(x,y)= 0

U(X,y)

xy;::: 0,
otherwise,

U(X,y)-S(X,y)

FIGURE 2

X,yE [-4.4)

S(X,y)
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TABLE I

x y z uo(x, y, z) SIx, y,z)

0.362 0.477 0.409 3.7330860011£-01 3.7330872132£-01
0.362 0.477 0.818 5.61945811 11£-01 5.6194600437£-01
0.362 0.954 0.409 7.4661720022£-01 7.4661744265£-01
0.362 0.954 0.818 1.1238916222£+ 00 1.1238920087£ + 00
0.724 0.477 0.409 1.0722908330£+ 00 1.0722911708£+ 00
0.724 0.477 0.818 1.6141319587£ +00 1.6141324983£+ 00
0.724 0.954 0.409 2.1445816660£ + 00 2.1445823417£ +00

0.724 0.954 0.818 3.2282639174£+ 00 3.2282649966£+ 00

with the boundary conditions

u(O, t)=O

and the initial conditions

u(x, 0) = ksin 7tX,

The analytical solution is

and u(l, t)=O (t ~ 0)

(0 ~ x ~ 1).

u(X, t) = ksin 7tX cos 7!t (O~x~l,t~O).

The explicit finite-difference formula of the equation with steps h = I and
the central-difference approximation for the derivative condition give the
following recursive formulas in the grid points:

(j~ 1),

Let h = 1=0.1, and using these approximative function values at the grid

TABLE 2

x y z Lluo(x, y, z) LlS(x, y, z)

0.362 0.477 0.409 2.8090956539£ +00 2.7988966219£+00
0.362 0.477 0.818 4.2285646118£ + 00 4.2137818940£ + 00
0.362 0.954 0.409 5.6181913078£+00 5.5977932314£+00
0.362 0.954 0.818 8.4571292235£+00 8.4275637906£+ 00
0.724 0.477 0.409 5.1 067110390£+ 00 5.0752305402£ + 00
0.724 0.477 0.818 7.6871919801£+00 7.6414257201£ +00
0.724 0.954 0.409 1.0213422078£+01 1.0150461004£+01
0.724 0.954 0.818 1.5374383960£+ 01 1.5282851443£+01
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TABLE 3

x u(x, I) S(x, I) u(x, I)-S(x, I)

0.5 0.5 0.0625 0.0625 -0.0000
0.9 0.5 0.0873 0.0874 0.0001
1.3 0.5 0.0788 0.0789 0.0002
1.7 0.5 0.0401 0.0403 0.0002
0.5 0.9 0.0138 0.0140 0.0001
0.9 0.9 0.0193 0.0195 0.0002
1.3 0.9 0.0174 0.0176 0.0002
1.7 0.9 0.0089 0.0090 0.0001
0.5 1.3 -0.0401 -0.0399 0.0002
0.9 1.3 -0.0561 -0.0558 0.0003
1.3 1.3 -0.0506 -0.0504 0.0002
1.7 1.3 -0.0258 -0.0257 OOסס.0

0.5 1.7 -0.0788 -0.0785 0.0003
0.9 1.7 -0.1100 -0.1098 0.0002
1.3 1.7 -0.0992 -0.0992 0.0001
1.7 1.7 -0.0506 -0.0507 -0.0001

points we construct the spline function S defined by the conditions
(1)n-(4)n and (6)n- Table 3 contains the values of the exact and numerical
solutions by the spline function S rounding to 4D on [0, 1Y

ACKNOWLEDGMENTS

The author expresses her special thanks to the colleagues in the Fachbereich Mathematik
der Universitat Hamburg, especially to Prof. Dr. G. Opfer and Dr. 1. Samaga for their
valuable help.

REFERENCES

1. W. F. AMES, "Numerical Methods for Partial Differential Equations," Computer Science
and Applied Mathematics, Academic Press, New York/San Francisco, 1977.

2. R. K. BEATSON AND Z. ZIEGLER, Monotonicity preserving surface interpolation, SIAM J.
Numer. Anal. 22, No.2 (1965), 401-411.

3. P. COSTANTINI, Algorithms for shape-preserving Interpolation, in "Splines in Numerical
Analysis" (J. W. Schmidt and H. Spath, Eds.), Mathematical Research, Vol. 52, pp. 31-46,
Academie-Verlag, Berlin.

4. R. F. FRANKE AND L. L. SCHUMAKER, A bibliography of multivariate approximation, in
"Proceedings of the International Workshop on Applied Multivariate Approximation"
(C. K. Chui, L. L. Schumaker, and F. I. Utreras, Eds.), pp.275-335, Academic Press,
New York, 1987.

5. F. JOHN, "Partial Differential Equations," Applied Mathematical Sciences, Vol. 1,
Springer-Verlag, New York/Heidelberg/Berlin, 1982.



QUADRATIC SPLINE APPROXIMATION 135

6. M. LENARD, On the two dimensional spline interpolation of Hermite-type, in
"Proceedings, Alfred Haar Memorial Conference, Budapest, 1985," Vol. I-II, Colloq.
Math. Soc. Janos Bolyai, Vol. 49, pp.531-541, North-Holland, Amsterdam/New York,
1987.

7. G. OPFER AND H. J. OBERLE, The derivation of cubic splines with obstacles by methods
of optimization and optimal control, Numer. Math. 52 (1988), 17-31.

8. E. PASSOW, Piecewise monotone spline interpolation, J. Approx. Theory 12 (1974),
240-241.

9. L. L. SCHUMAKER, On shape preserving quadratic spline interpolation, SIAM J. Numer.
Anal. 20, No.4 (1980), 854-864.

10. G. D. SMITH, "Numerical Solution of Partial Differential Equations," Clarendon/Oxford
Univ. Press, Oxford, 1978.

11. Yu. S. ZAVIALOV, B. I. KVASOV, AND V. L. MIROSHNICENKO, "Methods of Spline
Functions," Nauka, Moscow, 1980. [Russian]


